

Maiman

Diamond series lasers

Redefining diamond processing

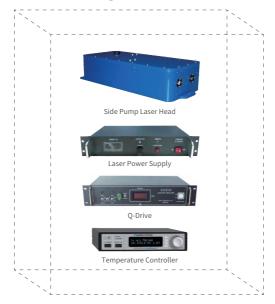
Diamond series high energy lasers

70ns IR/Green lasers

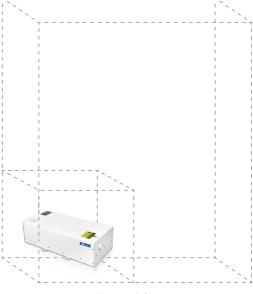
Features

- Single pulse energy>2mJ
- Superior beam quality M² <1.3
- Ultra-long service life and power stability
- All-in-one compact design

				I	
Model No.	MMEPU-355-10-HE-D30	MMEPG-532-16-HE-D30	MMEPG-532-20-HE-D30	MMEPA-1064-18-HE-D30	MMEPA-1064-25-HE-D30
Wavelength (nm)	355nm	532nm		1064nm	
Average Power (W)	>10W@10kHz	>16W@10kHz	>20W@10kHz	>18W@10kHz	>25W@10kHz
Single Pulse Energy (uJ)	~1000uJ@10kHz	~1600uJ@10kHz	~2000uJ@10kHz	~1800uJ@10kHz	~2500uJ@10kHz
Pulse Width (ns)	<30ns@10kHz				
Repetition Rate	10kHz-100kHz 7kHz-100kHz				
Pulse Stability			<3% rms		
Long Term Stability			<±3%		
Polarization Ratio	Horizontal;>100:1 Vertical;>100:1				
Beam Diameter	~0.9mm(at exit)				
Beam Circularity	>90%				
Spatial Mode	TEM ₀₀ ,M ² <1.3				
Operating Specifications					
Warm-up Time			<15 minutes from cold start	t	
Electrical Requierment	DC17.5V,350W				
Ambient Temperature	10-35°C, RH<80%				
Storage Conditions	-10-40°C, RH<90%				
Cooling System	Water-Cooled				
Water Temperature (laser inlet)	25℃				



Features


- Single pulse energy>2mJ
- Superior beam quality M² <1.5
- Ultra-long service life and power stability
- All-in-one compact design

Model No.	MMEPG-532-16-HE-D70	MMEPG-532-20-HE-D70	MMEPA-1064-18-HE-D70	MMEPA-1064-25-HE-D70	
Wavelength (nm)	532nm		1064nm		
Average Power (W)	>16W@10kHz	>20W@10kHz	>18W@10kHz	>25W@10kHz	
Single Pulse Energy (uJ)	~1600uJ@10kHz	~2000uJ@10kHz	~1800uJ@10kHz	~2500uJ@10kHz	
Pulse Width (ns)	>70ns@10kHz				
Repetition Rate	7kHz-100kHZ				
Pulse Stability	<3% rms				
Long Term Stability	<±3%				
Polarization Ratio	Vertical;>100:1		Random		
Beam Diameter	~0.9mm(at exit)				
Beam Circularity	>90%				
Spatial Mode	TEM ₀₀ ,M ² <1.5				
Operating Specifications					
Warm-up Time	<15 minutes from cold start				
Electrical Requierment	DC24V,500W				
Ambient Temperature	10-35°C, RH<80%				
Storage Conditions	-10-40°C, RH<90%				
Cooling System	Water-Cooled				
Water Temperature (laser inlet)	25℃				

Comparative advantage

• Conventional Laser System

• Maiman High Energy Laser

Advantages

Shortcomings

Low Failure Rate, Service Life Up to 6 Years • Different pump sources offer lifespans greatly exceeding 20,000 hours, 5-6 High Failure Rate and Limited Lifespan times that of the side-pumped module. • The side-pumped module exhibits a high failure rate, resulting in a short • Mechanical components undergo stress treatment, eliminating deformation lifespan and prone to attenuation, necessitating replacement 1-2 times annually. and mitigating laser power attenuation, resulting in superior beam pointing. • Structural susceptibility of the laser leads to deformation and subsequent Fault Rate Triple-layer protection, with an internal protection level of IP67 and an external and Lifespan cutting position discrepancies. protection level of IP65, minimizes environmental influences on the laser. Laser crystal end faces are vulnerable to contamination, leading to crystal damage. Cooling water solely used for shell cooling, avoiding contact with components. • Continuous contact of laser crystal with cooling water makes laser power Internal employment of TEC temperature control with precision of $\pm 0.01^{\circ}\text{C}$ susceptible to factors like water temperature, quality, and flow. eradicates the impact of cooling water on the laser, and facilitates one chiller supplying multiple lasers. Maintenance-free • Employing a completely new structure, operational methodology, and **Frequent Maintenance** manufacturing process, with power attenuation within 10% after 8000 hours Maintenance • Regular tuning is required for power maintenance. of operation. • Laser deformation causes poor spot directivity, resulting in cutting deviation. • Enhanced beam pointing stability, eliminating cutting deviations attributed to laser deformation. Integrated Design **Bulky Dimensions** • Highly integrated design reduces dimensions by 30%, not only diminishing • The laser head, laser power supply, Q driver, and temperature control system Dimensions are separate entities, leading to larger dimensions and an elevated failure rate equipment size, footprint, and costs, but also ensuring greater equipment stability and ease of installation and calibration. making installation and maintenance more challenging. Simplicity • Power adjustments via current modulation exhibit a narrow adjustment range • Distinct power control methodologies allow for broader and more precise laser resulting in significant power fluctuations power adjustments. Process • A majority of side-pumped lasers present poor beam quality, with M² > 3, • Excellent beam quality remains unaffected by power and frequency variations, Tuning uneven energy distribution, potentially leading to inferior cutting surface quality. ensuring consistent performance and resulting in smoother cutting surfaces $\,$ • A wide pulse width (approximately 100 ns) generates high processing heat, and straightforward adjustment.

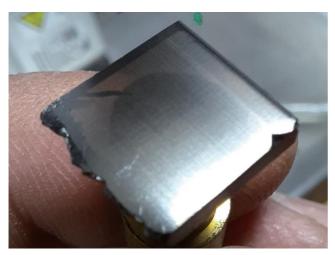
Economic Benefits

Increased Single-machine Power Consumption and Environmental Temperature Control Costs

possibly causing diamond breakage.

- Combined power consumption of a single machine (laser and chiller) amounts
 to 3.500W
- Chiller cooling requirements are stringent, leading to elevated costs.
- Different lasers necessitate distinct water temperatures and require individual matching with chillers, thereby increasing equipment costs.
- Chillers contribute to elevated environmental temperatures, consequently escalating environmental temperature control expenses.

Significant Energy Savings and Reduced Equipment and Environmental Temperature Control Costs through Remote Supply

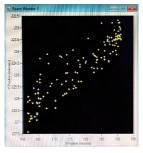

Narrow pulse width, lower processing heat, and elevated diamond yield.

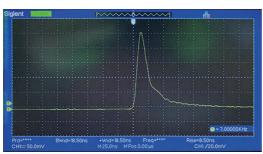
- Total power consumption of a single machine is under 1,500W, resulting in annual savings of 17,000kW.
- Chillers necessitate lower cooling standards, resulting in reduced costs.
- Uniform laser water temperature requirements enable a single chiller to cool multiple lasers, reducing chiller count and noise.
- Remote chiller supply significantly reduces equipment heat, effectively lowering environmental temperature control expenses.

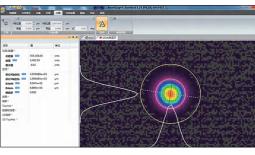
Introduction

The high peak power lasers excel during processing, low processing heat resulting in less damage to the cut surface so reaches a smoother surface; all-in-one laser design, easy to install and maintain; superior beam quality can achieve deeper and faster processing, more advantageous in cutting SiC, diamond and other super hard materials; self-cleaning system of resonant cavity solves the problem of power attenuation to maintain a long service life.

Test data

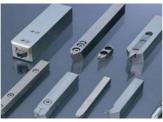

Data1
Single side cutting
Frequency: 10kHz
Stone Height: 10.3mm
Opening: 226um
Production: 27min



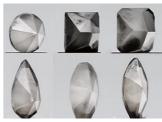


Data2
Single side cutting
Frequency: 10kHz
Stone Height: 7.6mm
Opening: 140um
Production: 15min

Performance diagram


- Laser pointing stability
- 2 Pulse width reading

3 Beam profile


Applications

- Diamond Cutting Slicing, Coring and Faceting
- Carbon material cutting
- Cutting of super hard materials PcBN, PCD, SCD, CVD, SiC, etc

Diamond series mini UV laser

Mini UV laser

Introduction

Small size, can be held up with one hand; the pulse width 6-8ns, ultra-high peak power perfectly to realize the surface marking of electronic products.

Features

- The laser power 1W;
- Solve power attenuation and meet 7*24 hours of work;
- The service life exceeds 20,000 hours, maintenance-free, no need for regular commissioning;
- Split machine, laser head compatible with optical path of fiber laser;
- Air-cooled and easy to integrate.

Model No.	MMEPU-D-355-1
Optical Characteristics	
Wavelength (nm)	355nm±1nm
Average Power (W)	>1W@20kHz
Single Pulse Energy (uJ)	~50uJ@20kHz
Pulse Width (ns)	~7ns@20kHz
Repitition Rate	Uncontrollable, range15-20kHz
Pulse Stability	<3% rms
Long Term Stability	<±3%
Beam Characteristics	
Polarization Ratio	Vertical;>100:1
Beam Diameter	7mm
Beam Circularity	>90%
Spatial Mode	TEM ₀₀ ,M ² <1.3
Operating Specifications	
Warm-up Time	<15 minutes from cold start
Electrical Requirement	DC12V, >200W
Ambient Temperature	10-35°C, RH<80%
Storage Conditions	-10-40°C, RH<90%
Physical Characteristics	
Cooling System	Air-Cooled

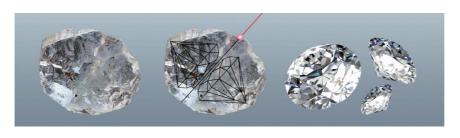
Applications

- Diamond girdle code marking
- Precision marking on plastic and metal

Mini IR laser

Introduction

Superior beam quality and peak power ensure to achieve clear and shallow marks on the diamond and minimize the damage to the diamond


Features

- The laser power 1W;
- Dual mode laser emission-parallel laser mode and focusing laser mode, to meet the needs of different planning machines;
- Superior beam quality, minimum laser spot <20um;
- High-precision temperature control to ensure long-term stable operation of the laser;
- Service life over 20000 hours.

Model No.	MMD-YAG-1064-1	
Optical Characteristics		
Wavelength (nm)	1064nm±1nm	
Average Power (W)	>1W@12kHz	
Single Pulse Energy (uJ)	~30uJ@12kHz	
Pulse Width (ns)	~12ns@12kHz	
Repitition Rate	~12kHz	
Pulse Stability	<3% rms	
Long Term Stability	<±3%	
Beam Characteristics		
Polarization Ratio	Random polarization	
Beam Diameter	~0.8mm	
Beam Circularity	>90%	
Spatial Mode	TEM ₀₀ ,M²<1.2	
Operating Specifications		
Warm-up Time	<15 minutes from cold start	
Electrical Requirement	AC220V/50Hz	
Ambient Temperature	10-35℃, RH<80%	
Storage Conditions	-10-40°C,RH<90%	
Physical Characteristics		
Cooling System	Air-Cooled	

Applications

- Diamond planning
- Diamond girdle code marking

Tianjin Maiman Laser Technology Co., Ltd.

Address: 201, D6-A, East Huigu Industrial, Xiqing District, Tianjin

Tel: +86-22-8789 4207 8789 4217

Mobile: +86 175 2652 4352 Fax: +86-22-8789 4217 Web: www.maimanlaser.com E-mail: lynn@maimanlaser.com

Tianjin Maimanlaser Technology Co., Ltd.reserves the copy right of this catalog and reserves all the rights to change the information and specifications contained in this catalog without prior notice.